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A	simple	mathematical	model	without	seasonality	indicated	
that	the	apparently	chaotic	dengue	epidemics	in	Singapore	
have	 characteristics	 similar	 to	 epidemics	 resulting	 from	
chance.	Randomness	as	a	sufficient	condition	for	patterns	
of	dengue	epidemics	in	equatorial	regions	calls	 into	ques-
tion	existing	explanations	for	dengue	outbreaks	there.

Dengue, a vectorborne infectious disease, has complex 
epidemiologic dynamics (1). The recent expansion 

of the range of dengue makes this disease a considerable 
public health concern worldwide (2). In the city-state of 
Singapore, the number of dengue cases has increased dra-
matically since the 1990s, and all 4 serotypes of the dengue 
virus are endemic (3). Cyclical outbreaks of dengue of in-
creasing magnitude have been observed with a cycle of 5–6 
years (4), but this pattern appeared to cease in 2005, and 
no obvious cycle has occurred since then. Although other 
tropical and subtropical countries in Southeast Asia have 
distinct seasonality (5) so that dengue epidemics occur at 
distinct and predictable times of the year (6), Singapore’s 
proximity to the equator gives it an aseasonal climate, and 
the timing of dengue epidemics is irregular (7,8).

Many factors have been postulated to contribute to den-
gue’s spread in Singapore, such as a consistently warm and 
humid climate that favors year-round vector proliferation, 
high urbanization, and a tendency for vectors to live in hu-
man residences (9). The extent to which these factors affect 
dengue epidemics in aseasonal Singapore, if they do at all, 
is unclear. Competing explanations for the timing of large 
dengue outbreaks in Singapore can be found in the literature. 
One study attributes dengue epidemics to conducive tem-
peratures and precipitation variations (10); another attributes 
them to variable maximum and minimum temperatures (11). 
Rainfall and temperature have been shown to be related to 
dengue outbreaks in Brazil, another equatorial country (12).

The tendency to see patterns where none exists has 
been well recognized. When 2 events happen contemporar-
ily and a plausible story connects the events, the tendency to 
assume that 1 causes the other is strong (13). Cancer cases 

cluster around mobile phone masts (base stations), not be-
cause the radiation from a mast is carcinogenic at typical ex-
posures but because numerous masts exist and occasionally 
cancer cases cluster together, similarly to spilled grains of 
rice (14). A study in the heuristics and biases program dis-
cusses a famous example from sports (15), which are noto-
rious for stories being concocted around essentially chance 
outcomes. Basketball fans, coaches, and pundits often be-
lieve that players have “hot hand” streaks when they have 
a run of good form, making many shots in succession and 
playing above their usual level during a match. The study 
systematically deconstructed this belief by a series of sta-
tistical tests that showed that the patterns of actual hits and 
misses was consistent with mere chance—analogous to se-
quences of coin tosses rather than an illusory hot hand (15).

In probabilistic models, chance is represented by error 
terms, or noise, encompassing all the many complicating 
factors that are not worth including in the systematic sig-
nal. Past models for dengue in Singapore have accounted 
for chance alongside systematic effects of the weather and 
other factors (10,11). However, is chance alone sufficient 
to explain the frequent, large, and ostensibly chaotic out-
breaks we observe? We sought to assess whether the rise 
and fall of dengue outbreaks from week to week in Sin-
gapore come in runs or are indistinguishable from random 
noise and thereby whether it is necessary to consider other 
possible drivers of these epidemics.

The Study
We reviewed data on the weekly incidence of clinically di-
agnosed dengue in Singapore during 2003–2012. We com-
pared the number of dengue cases per week to a simple sim-
ulation model (online Technical Appendix, http://wwwnc.
cdc.gov/EID/article/21/9/14-1030-Techapp.pdf) with no 
environmental drivers other than the dependence of weekly 
number of cases from up to 4 weeks before. Summaries of 
observed incidence and of the simulated aseasonal model 
were compared for assessing proximity of the behavior of 
observed cases to the behavior of simulated cases.

The simulation model used was a standard autoregres-
sive time series model in which the number of cases dur-
ing any week affects the mean number of cases for the 4 
weeks that follow. We allowed the simulated number to 
have a random variation around that mean; data were log-
transformed to ensure that incidence was positive. The fit-
ted autoregressive model was used to simulate synthetic 
dengue outbreaks over multiple decades, and incidence 
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DISPATCHES

of simulated outbreaks was compared with observed inci-
dence. We devised a series of statistical measures that were 
inspired by the “hot hand” in basketball study (15) and that 
might falsify the model that accounted for chance alone. 
This model included correlation between dengue incidence 
by week and the preceding week (the autocorrelation func-
tion), the probability distribution for the weekly incidence 
aggregated over 10 years, the distribution of the annual 
number of cases, the maximum number of cases observed 
over the previous decade, and the probability of a rise in 

incidence each week following a series of rises (i.e., the 
possible beginning of an epidemic) or a series of declines 
(i.e., the possible ending of an epidemic). We also created 
simulated trajectories (Figure 1).

Conclusions
For all metrics considered, the actual scenario (i.e., the 
observed dengue incidence) was fully consistent with the 
aseasonal model; both the autocorrelation function (Fig-
ure 2, panel A) and the cumulative probability of dengue  
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Figure 2.	Comparison	of	observed	dengue	incidence	and	incidence	from	simulated	aseasonal	models,	2003–2012,	Singapore.	A)	
Distribution	of	actual	and	simulated	autocorrelation	functions	at	different	time	lags	(e.g.,	this	week	versus	next	week;	last	week	versus	
next	week,	etc.)	B)	Distribution	of	cumulative	distribution	function	of	the	simulated	weekly	number	of	dengue	cases	and	cumulative	
density	function	of	the	actual	numbers	of	cases.	C)	Conditional	probabilities	of	an	increase	in	number	of	dengue	cases	and	95%	CIs	
for	simulated	scenario	and	actual	data,	given	1–3	consecutive	decreases	or	increases.	D)	Density	plot	of	simulated	and	actual	annual	
number	of	dengue	cases.	E)	Density	plot	of	simulated	10-year	maximum	number	of	cases	and	actual	10-year	number	of	cases.

Figure 1.	Weekly	trends	
for	observed	and	simulated	
dengue	incidence,	2003–2012,	
Singapore.	A)	Weekly	trends	for	
the	actual	scenario	of	observed	
dengue	incidence.	B–D)	Three	
randomly	generated	simulated	
scenarios	from	the	aseasonal	
model	described	in	the	text	and	
the	online	Technical	Appendix	
(http://wwwnc.cdc.gov/EID/
article/21/9/14-1030-Techapp.
pdf).	Although	the	peaks	are	
not	synchronized,	similar	
patterns	can	be	discerned;	
large	and	small	outbreaks	of	
similar	scale	and	frequency	
occur	in	all	4	scenarios.
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incidence (Figure 2, panel B) from the historical incidence 
data lie within the distribution resulting from the aseasonal 
model. The probabilities of an increase in incidence each 
week that follows a series of rises or falls and correspond-
ing 95% CIs calculated on the basis of simulations from 
the aseasonal model all include the proportions observed 
historically (Figure 2, panel C). Furthermore, the distribu-
tion of the annual incidence (Figure 2, panel D) and the 
maximum observed incidence over the decade (Figure 2, 
panel E) are consistent with the aseasonal model. Similarly, 
the number of successive increases or decreases over the 
decade was consistent with chance (p = 0.18).

These metrics are not conventional measures of dengue 
surveillance data; they capture more complex, emergent 
properties of the epidemic process. However, our findings 
show that, for dengue incidence in equatorial Singapore, 
where average monthly temperatures vary only from 26°C–
28°C, randomness alone is sufficient to explain the appar-
ent epidemics of dengue. Although seasonal factors may 
have a role, as the literature suggests (10,11), seasonality 
or other temporal drivers such as fluctuation in the intensity 
of the country’s vector control program are not necessary to 
explain the qualitative and quantitative patterns of dengue 
in this equatorial city-state. As our results suggest, the pos-
sibility that dengue outbreaks occur in aseasonal locations 
because of chance should be considered. 
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Data used in this paper are available at http://www.moh.gov.sg.
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